
Tabla de contenido
Dominio y rango de funciones trigonométricas inversas
El valor de una función trigonométrica inversa que se encuentra en su rama de valor principal se llama valor principal de esa función trigonométrica inversa
Gráfico de funciones trigonométricas inversas
$ sin ^ {- 1} x $ $ cos ^ {- 1} x $ $ tan ^ {- 1} x $ $ cosec ^ {- 1} x $$ seg ^ {- 1} x $ $ cot ^ {- 1} x $
Inverso de Negativo x
$ sin ^ {- 1} (-x) = -sin ^ {- 1} (x) $ $ cos ^ {- 1} (-x) = pi – cos ^ {- 1} (x) $ $ tan ^ {- 1} (-x) = -tan ^ {- 1} (x) $ $ sec ^ {- 1} (-x) = pi – sec ^ {- 1} (x) $ $ cosec ^ {- 1} (-x) = -cosec ^ {- 1} (x) $ $ cot ^ {- 1} (-x) = pi – cot ^ {- 1} (x) $
Otras fórmulas
$ sin ^ {- 1} ( frac {1} {x}) = cosec ^ {- 1} (x) $ $ cos ^ {- 1} ( frac {1} {x}) = sec ^ {- 1} (x) $ $ tan ^ {- 1} ( frac {1} {x}) = cot ^ {- 1} (x) $ $ sin ^ {- 1} (x) + cos ^ {-1} (x) = frac { pi} {2} $ $ sec ^ {- 1} (x) + cosec ^ {-1} (x) = frac { pi} {2} $ $ tan ^ {- 1} (x) + cot ^ {-1} (x) = frac { pi} {2} $ $ sin ^ {- 1} (x) + sin ^ {-1} (y) = sin ^ {- 1} (x sqrt {1-y ^ 2} + y sqrt {1-x ^ 2}) $ if $ x, y geq 0 $, $ x ^ 2 + y ^ 2 leq 1 $ $ sin ^ {- 1} (x) + sin ^ {-1} (y) = pi – sin ^ {- 1} (x sqrt {1-y ^ 2} + y sqrt {1-x ^ 2}) $ if $ x, y geq 0 $, $ x ^ 2 + y ^ 2> 1 $ $ sin ^ {- 1} (x) – sin ^ {-1} (y) = sin ^ {- 1} (x sqrt {1-y ^ 2} – y sqrt {1-x ^ 2)} $ if $ x, y geq 0 $, $ x ^ 2 + y ^ 2 leq 1 $ $ sin ^ {- 1} (x) – sin ^ {-1} (y) = pi – sin ^ {- 1} (x sqrt {1-y ^ 2} – y sqrt {1-x ^ 2}) $ if $ x, y geq 0 $, $ x ^ 2 + y ^ 2> 1 $ $ cos ^ {- 1} (x) + cos ^ {-1} (y) = cos ^ {- 1} (xy – sqrt {1-y ^ 2} sqrt {1-x ^ 2}) $ si $ x, y geq 0 $, $ x ^ 2 + y ^ 2 leq 1 $ $ cos ^ {- 1} (x) + cos ^ {-1} (y) = pi – cos ^ {- 1} ((xy – sqrt {1-y ^ 2} sqrt {1-x ^ 2}) $ if $ x, y geq 0 $, $ x ^ 2 + y ^ 2> 1 $ $ cos ^ {- 1} (x) – cos ^ {-1} (y) = cos ^ {- 1} (xy + sqrt {1-y ^ 2} sqrt {1-x ^ 2}) $ si $ x, y geq 0 $, $ x ^ 2 + y ^ 2 leq 1 $ $ cos ^ {- 1} (x) – cos ^ {-1} (y) = pi – cos ^ {- 1} (xy + sqrt {1-y ^ 2} sqrt {1-x ^ 2 }) $ if $ x, y geq 0 $, $ x ^ 2 + y ^ 2> 1 $ $ tan ^ {- 1} (x) + tan ^ {-1} (y) = tan ^ {- 1} ( frac {x + y} {1-xy}) $, si $ x, y> 0 $, $ xy <1 $ $ tan ^ {- 1} (x) + tan ^ {-1} (y) = pi + tan ^ {- 1} ( frac {x + y} {1-xy}) $, si $ x, y> 0 $, $ xy> 1 $ $ tan ^ {- 1} (x) + tan ^ {-1} (y) = tan ^ {- 1} ( frac {x + y} {1-xy}) – pi $, si $ x < 0, y > 0 $, $ xy> 1 $ $ tan ^ {- 1} (x) – tan ^ {-1} (y) = tan ^ {- 1} ( frac {xy} {1 + xy}) – pi $, si $ xy> -1 PS $ tan ^ {- 1} (x) + tan ^ {-1} (y) + tan ^ {-1} (z) = tan ^ {- 1} ( frac {x + y + z – xyz} { 1-xy-yz-xz}) $ $ 2 sin ^ {- 1} (x) = sin ^ {- 1} (2x sqrt {1-x ^ 2}) $ if $ – frac {1} { sqrt {2}} leq x frac {1} { sqrt {2}} $ $ 2 cos ^ {- 1} (x) = cos ^ {- 1} (2x ^ 2 -1) $ $ 2 tan ^ {- 1} (x) = tan ^ {- 1} ( frac {2x} {1-x ^ 2}) $ if $ -1 $ 2 tan ^ {- 1} (x) = sin ^ {- 1} ( frac {2x} {1 + x ^ 2}) $ if $ | x | leq 1 $ $ 2 tan ^ {- 1} (x) = cos ^ {- 1} ( frac {1 -x ^ 2} {1 + x ^ 2}) $ if $ x geq 0 $ $ 3 sin ^ {- 1} (x) = sin ^ {- 1} (3x -4x ^ 3) $ $ 3 cos ^ {- 1} (x) = cos ^ {- 1} (4x ^ 3 – 3x) $ $ 3 tan ^ {- 1} (x) = tan ^ {- 1} ( frac {3x -x ^ 3} {1-3x ^ 2}) $